Beau Schoch - Agricultural Engineer United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) - Salinas Service Center (831) 424-1036 ext. 116 # What Happens With Land Use Conversion? # Why Do We Care? Should We Care? ## **Lets Compare!** ## Lets Compare! Site Runoff Example Site A 18 acres 5-10% slope Sandy Loam soils Berry Production Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture ## Site Runoff Example Hydrology 101 Site A 18 acres 5-10% slope Sandy Loam soils Berry Production Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture ## Site Runoff Example Hydrology 101 Site A 18 acres 5-10% slope Sandy Loam soils Berry Production Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture The Rational Method The Math Q = c i A Q = peak discharge, ft.3/sec. (1 cfs = 450 gpm) c = runoff coefficient, unitless i = rainfall intensity, inches/hour A = area, sq.ft. $$Q = c i A$$ #### c = runoff coefficient, unitless Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Hydrology 7-F-3 | Table 1 | Runoii | Coefficients | 101. | tne Ka | ationai | lvietno | |---------|--------|--------------|------|--------|---------|---------| | | | | | | | | | | FLAT | ROLLING | HILLY | |---------------------------------------|------|---------|-------| | D | 0.00 | 0.00 | 0.00 | | Pavement & Roofs | 0.90 | 0.90 | 0.90 | | Earth Shoulders | 0.50 | 0.50 | 0.50 | | Drives & Walks | 0.75 | 0.80 | 0.85 | | Gravel Pavement | 0.85 | 0.85 | 0.85 | | City Business Areas | 0.80 | 0.85 | 0.85 | | Apartment Dwelling Areas | 0.50 | 0.60 | 0.70 | | Light Residential: 1 to 3 units/acre | 0.35 | 0.40 | 0.45 | | Normal Residential: 3 to 6 units/acre | 0.50 | 0.55 | 0.60 | | Dense Residential: 6 to 15 units/acre | 0.70 | 0.75 | 0.80 | | Lawns | 0.17 | 0.22 | 0.35 | | Grass Shoulders | 0.25 | 0.25 | 0.25 | | Side Slopes, Earth | 0.60 | 0.60 | 0.60 | | Side Slopes, Turf | 0.30 | 0.30 | 0.30 | | Median Areas, Turf | 0.25 | 0.30 | 0.30 | | Cultivated Land, Clay & Loam | 0.50 | 0.55 | 0.60 | | Cultivated Land, Sand & Gravel | 0.25 | 0.30 | 0.35 | | Industrial Areas, Light | 0.50 | 0.70 | 0.80 | | Industrial Areas, Heavy | 0.60 | 0.80 | 0.90 | | Parks & Cemeteries | 0.10 | 0.15 | 0.25 | | Playgrounds | 0.20 | 0.25 | 0.30 | | Woodland & Forests | 0.10 | 0.15 | 0.20 | | Meadows & Pasture Land | 0.25 | 0.30 | 0.35 | | Unimproved Areas | 0.10 | 0.20 | 0.30 | | | | | | Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 #### Note: - · Impervious surfaces in bold - Rolling = ground slope between 2 percent to 10 percent - Hilly = ground slope greater than 10 percent Q = c i A Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. c = runoff coefficient, unitless i = rainfall intensity, inches/hour Time of Concentration (Tc): How long does it take for the most "distant raindrop" to reach the design point? Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. Q = c i A Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. c = runoff coefficient, unitless i = rainfall intensity, inches/hour Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. Q = c i A Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. c = runoff coefficient, unitless i = rainfall intensity, inches/hour Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. $$Q = c i A$$ Site A 18 acres 5-10% slope **Sandy Loam soils** **Berry Production** C = 0.85 Tc = assume 10 min. c = runoff coefficient, unitless i = rainfall intensity, inches/hour Site B 18 acres 5-10% slope **Sandy Loam soils** **Native Pasture** C = 0.35 Tc = assume 2 hrs. #### What Size Storm to Design For? - •Minimum 10 year storm event on all infrastructure - Primary Spillways - All inlets and outlets - Non-erosive velocities - Consideration of the 100 year storm event - Emergency Spillways - Protect life and property $$Q = c i A$$ c = runoff coefficient, unitless i = rainfall intensity, inches/hour Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. **Lets Consider the 10-year Storm** Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. i = .45 in./hr. | i (10yr) = 1.6 in./h | |----------------------| |----------------------| | | PDS | -based pred | ipitation fre | equency est | imates with | 90% confi | dence interv | als (in inch | es/hour)1 | |----------|--------------------------------|------------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|----------------------------|------------------------------| | Downst | | Average recurrence interval(years) | | | | | | | | | Duration | 1 | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 | | 5-min | 1.27 (1.16 - 1.42) | 1.52
(1.39-1.69) | 1.90 (1.72-2.11) | 2.23
(1.00-3.53) | 2.74
(2.34-3.24) | 3.18 (2.63 - 3.86) | 3.67
(2.94-4.62) | 4.24 (3.26-5.54) | 5.10 (3.72-7.06) | | 10-min | 0.912
(0.834 -1.01) | 1.09
(0.996-1.22) | 1.36 (1.23-1.52) | 1.60
(1.43-1.81) | 1.96 (1.67-2.32) | 2.27 (1.88 - 2.77) | 2.63 (2.11-3.31) | 3.04
(2.34-3.97) | 3.65 (2.67-5.06) | | 15-min | 0.736
(0.672-0.816) | 0.884
(0.800-0.980) | 1.18
(0.992-1.22) | 1.29
(1.15-1.45) | 1.58 (1.35-1.87) | 1.84
(1.52-2.24) | 2.12
(1.70-2.67) | 2.44 (1.89-3.20) | 2.95 (2.15-4.08) | | 30-min | 0.512 (0.466 -0.568) | 0.612
(0.556-0.680) | 0.760 (0.688-0.848) | 0.894 (0.800-1.01) | 1.10 (0.936-1.30) | 1.27 (1.06-4.55) | 1.47
(1.18-1.85) | 1.70 (1.31-2.22) | 2.04 (1.49-2.83) | | 60-min | 0.346 (0.315 - 0.384) | 0.415
(0.377-0.461) | 0.515 (0.466-0.574) | 0.605
(0.541-0.683) | 0.743
(0.634-0.879) | 0.862 (0.715-1.05) | 0.996
(0.799-1.26) | 1.15 (0.887-1.50) | 1.39 (1.01-1.92) | | 2-hr | 0.256 (0.233 - 0.284) | 0.307
(0.279-0.342) | 0.380 (0.344-0.424) | 0.445
(0.398-0.502) | 0.541 (0.462-0.640) | 0.622 (0.516 - 0.758) | 0.712
(0.571-0.897) | 0.812 (0.627-1.06) | 0.962
(0.702-1.33) | | 3-hr | 0.213 (0.194 -0.237) | 0.256
(0.233-0.285) | 0.318 (0.288-0.355) | 0.371 (0.332-0.419) | 0.451 (0.385-0.533) | 0.516 (0.428 - 0.629) | 0.589 (0.472-0.742) | 0.669 (0.516-0.875) | 0.788 (0.575-1.09) | | 6-hr | 0.146 (0.133 - 0.162) | 0.177
(0.161-0.197) | 0.220 (0.199-0.245) | 0.257 (0.230-0.290) | 0.311 (0.266-0.369) | 0.356 (0.296 -0.434) | 0.405
(0.325-0.510) | 0.458 (0.354-0.600) | 0.537
(0.392-0.743 | | 12-hr | 0.095
(0.086 -0.105) | 0.115
(0.105-0.128) | 0.144 (0.130-0.161) | 0.169 (0.151 - 0.191) | 0.206
(0.176-0.243) | 0.236
(0.196 -0.287) | 0.269
(0.215-0.338) | 0.304 (0.235-0.398) | 0.357
(0.260-0.494 | | 24-hr | 0.062 (0.057 -0.068) | 0.076
(0.070-0.084) | 0.096
(0.089-0.106) | 0.113 (0.104-0.126) | 0.138 (0.123-0.158) | 0.159
(0.139 - 0.185) | 0.181 (0.155-0.215) | 0.205 (0.172-0.250) | 0.241
(0.194-0.304 | $$Q = c i A$$ Site A 18 acres 5-10% slope **Sandy Loam soils** **Berry Production** C = 0.85 Tc = assume 10 min. i (10yr) = 1.6 in./hr. c = runoff coefficient, unitless i = rainfall intensity, inches/hour A = 18 acres = 784,080 sq.ft. **Lets Consider the 10-year Storm** Site B 18 acres 5-10% slope **Sandy Loam soils** **Native Pasture** C = 0.35 Tc = assume 2 hrs. i = .45 in./hr. $$Q = c i A$$ Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. c = runoff coefficient, unitlessi = rainfall intensity, inches/hourA = 18 acres = 784,080 sq.ft. **Lets Consider the 10-year Storm** 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. i = .45 in./hr. Site B i (10yr) = 1.6 in./hr. = 0.000037 ft./sec. (unit conversion) The Math Q = (0.85)*(0.000037 ft./sec.)*(784,080 ft.2) Q = 25 ft.3/sec (cfs) $$Q = c i A$$ Site A 18 acres 5-10% slope Sandy Loam soils Berry Production C = 0.85 Tc = assume 10 min. i (10yr) = 1.6 in./hr. The Math Q = 25 ft.3/sec (cfs) c = runoff coefficient, unitlessi = rainfall intensity, inches/hourA = 18 acres = 784,080 sq.ft. **Lets Consider the 10-year Storm** Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture C = 0.35 Tc = assume 2 hrs. i = .45 in./hr. The Math Q = 2.9 cfs .VS ## Lets Compare! Site Runoff Example Site A 18 acres 5-10% slope Sandy Loam soils Berry Production Site B 18 acres 5-10% slope Sandy Loam soils Native Pasture Q = 25 cfs Q = 2.9 cfs ### **Identifying the Problem is Easy** Figuring the Solution is Difficult ## **Proactive** VS. Reactive Why all the fuss? Sediment vs. Water Control ## How big are we talking? ## Questions/Comments?