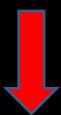
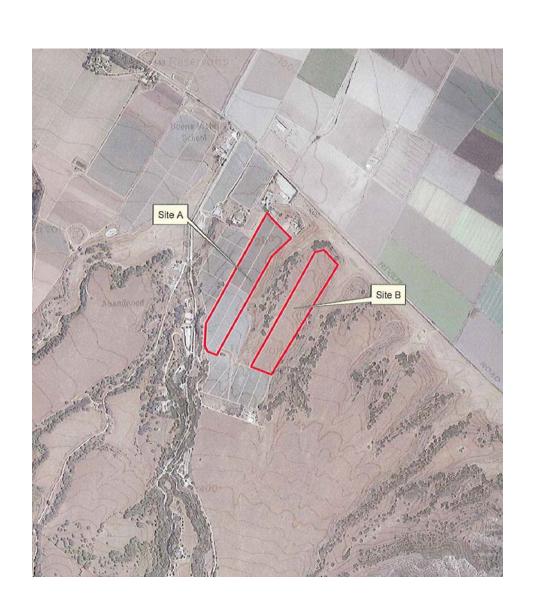
Beau Schoch

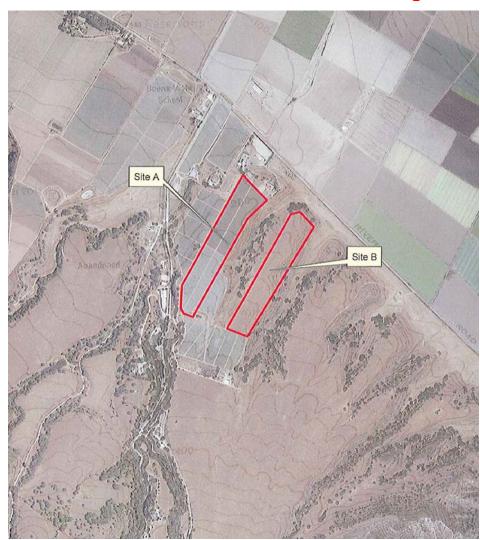
- Agricultural Engineer
 United States Department of Agriculture
 (USDA)
- Natural Resources Conservation Service (NRCS)
- Salinas Service Center (831) 424-1036 ext. 116

What Happens With Land Use Conversion?



Why Do We Care? Should We Care?

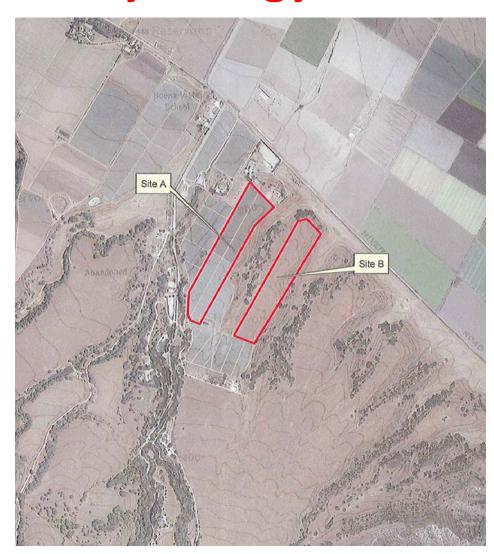



Lets Compare!

Lets Compare! Site Runoff Example

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production



Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture

Site Runoff Example Hydrology 101

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production

Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture

Site Runoff Example Hydrology 101

Site A

18 acres

5-10% slope

Sandy Loam soils Berry Production Site B

18 acres

5-10% slope

Sandy Loam soils
Native Pasture

The Rational Method

The Math

Q = c i A

Q = peak discharge, ft.3/sec. (1 cfs = 450 gpm)

c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

A = area, sq.ft.

$$Q = c i A$$

c = runoff coefficient, unitless

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production

C = 0.85

Hydrology 7-F-3

Table 1	Runoii	Coefficients	101.	tne Ka	ationai	lvietno

	FLAT	ROLLING	HILLY
D	0.00	0.00	0.00
Pavement & Roofs	0.90	0.90	0.90
Earth Shoulders	0.50	0.50	0.50
Drives & Walks	0.75	0.80	0.85
Gravel Pavement	0.85	0.85	0.85
City Business Areas	0.80	0.85	0.85
Apartment Dwelling Areas	0.50	0.60	0.70
Light Residential: 1 to 3 units/acre	0.35	0.40	0.45
Normal Residential: 3 to 6 units/acre	0.50	0.55	0.60
Dense Residential: 6 to 15 units/acre	0.70	0.75	0.80
Lawns	0.17	0.22	0.35
Grass Shoulders	0.25	0.25	0.25
Side Slopes, Earth	0.60	0.60	0.60
Side Slopes, Turf	0.30	0.30	0.30
Median Areas, Turf	0.25	0.30	0.30
Cultivated Land, Clay & Loam	0.50	0.55	0.60
Cultivated Land, Sand & Gravel	0.25	0.30	0.35
Industrial Areas, Light	0.50	0.70	0.80
Industrial Areas, Heavy	0.60	0.80	0.90
Parks & Cemeteries	0.10	0.15	0.25
Playgrounds	0.20	0.25	0.30
Woodland & Forests	0.10	0.15	0.20
Meadows & Pasture Land	0.25	0.30	0.35
Unimproved Areas	0.10	0.20	0.30

Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture

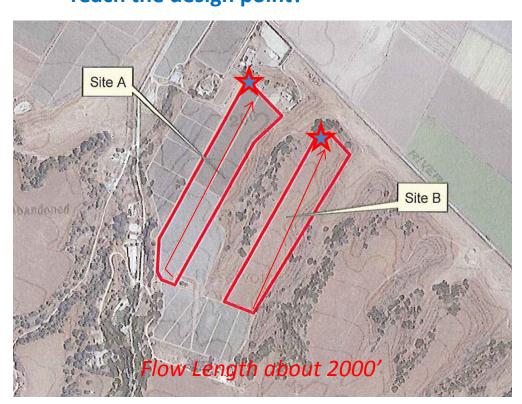
C = 0.35

Note:

- · Impervious surfaces in bold
- Rolling = ground slope between 2 percent to 10 percent
- Hilly = ground slope greater than 10 percent

Q = c i A

Site A


18 acres
5-10% slope
Sandy Loam soils
Berry Production
C = 0.85

Tc = assume 10 min.

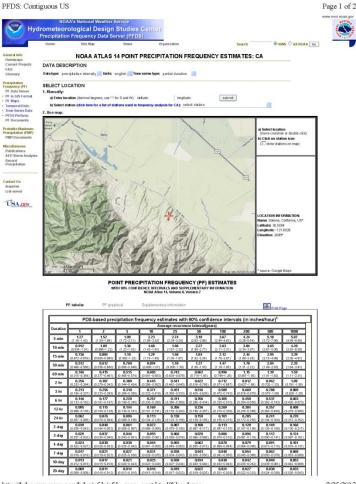
c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

Time of Concentration (Tc): How long does it take for the most "distant raindrop" to reach the design point?

Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35

Tc = assume 2 hrs.


Q = c i A

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production
C = 0.85
Tc = assume 10 min.

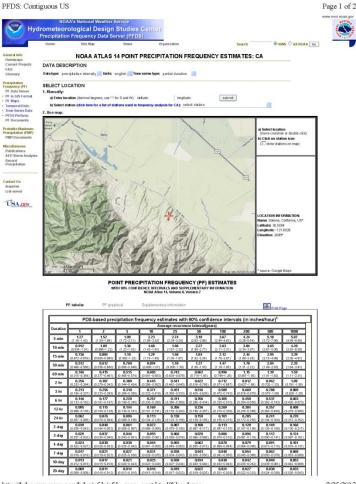
c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

Site B

18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35

Tc = assume 2 hrs.


Q = c i A

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production
C = 0.85
Tc = assume 10 min.

c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

Site B

18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35

Tc = assume 2 hrs.

$$Q = c i A$$

Site A

18 acres

5-10% slope

Sandy Loam soils

Berry Production

C = 0.85

Tc = assume 10 min.

c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

Site B

18 acres

5-10% slope

Sandy Loam soils

Native Pasture

C = 0.35

Tc = assume 2 hrs.

What Size Storm to Design For?

- •Minimum 10 year storm event on all infrastructure
 - Primary Spillways
 - All inlets and outlets
 - Non-erosive velocities
- Consideration of the 100 year storm event
 - Emergency Spillways
 - Protect life and property

$$Q = c i A$$

c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

Site A

18 acres
5-10% slope

Sandy Loam soils Berry Production

C = 0.85

Tc = assume 10 min.

Lets Consider the 10-year Storm

Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35

Tc = assume 2 hrs.

i = .45 in./hr.

i (10yr) = 1.6 in./h

	PDS	-based pred	ipitation fre	equency est	imates with	90% confi	dence interv	als (in inch	es/hour)1
Downst		Average recurrence interval(years)							
Duration	1	2	5	10	25	50	100	200	500
5-min	1.27 (1.16 - 1.42)	1.52 (1.39-1.69)	1.90 (1.72-2.11)	2.23 (1.00-3.53)	2.74 (2.34-3.24)	3.18 (2.63 - 3.86)	3.67 (2.94-4.62)	4.24 (3.26-5.54)	5.10 (3.72-7.06)
10-min	0.912 (0.834 -1.01)	1.09 (0.996-1.22)	1.36 (1.23-1.52)	1.60 (1.43-1.81)	1.96 (1.67-2.32)	2.27 (1.88 - 2.77)	2.63 (2.11-3.31)	3.04 (2.34-3.97)	3.65 (2.67-5.06)
15-min	0.736 (0.672-0.816)	0.884 (0.800-0.980)	1.18 (0.992-1.22)	1.29 (1.15-1.45)	1.58 (1.35-1.87)	1.84 (1.52-2.24)	2.12 (1.70-2.67)	2.44 (1.89-3.20)	2.95 (2.15-4.08)
30-min	0.512 (0.466 -0.568)	0.612 (0.556-0.680)	0.760 (0.688-0.848)	0.894 (0.800-1.01)	1.10 (0.936-1.30)	1.27 (1.06-4.55)	1.47 (1.18-1.85)	1.70 (1.31-2.22)	2.04 (1.49-2.83)
60-min	0.346 (0.315 - 0.384)	0.415 (0.377-0.461)	0.515 (0.466-0.574)	0.605 (0.541-0.683)	0.743 (0.634-0.879)	0.862 (0.715-1.05)	0.996 (0.799-1.26)	1.15 (0.887-1.50)	1.39 (1.01-1.92)
2-hr	0.256 (0.233 - 0.284)	0.307 (0.279-0.342)	0.380 (0.344-0.424)	0.445 (0.398-0.502)	0.541 (0.462-0.640)	0.622 (0.516 - 0.758)	0.712 (0.571-0.897)	0.812 (0.627-1.06)	0.962 (0.702-1.33)
3-hr	0.213 (0.194 -0.237)	0.256 (0.233-0.285)	0.318 (0.288-0.355)	0.371 (0.332-0.419)	0.451 (0.385-0.533)	0.516 (0.428 - 0.629)	0.589 (0.472-0.742)	0.669 (0.516-0.875)	0.788 (0.575-1.09)
6-hr	0.146 (0.133 - 0.162)	0.177 (0.161-0.197)	0.220 (0.199-0.245)	0.257 (0.230-0.290)	0.311 (0.266-0.369)	0.356 (0.296 -0.434)	0.405 (0.325-0.510)	0.458 (0.354-0.600)	0.537 (0.392-0.743
12-hr	0.095 (0.086 -0.105)	0.115 (0.105-0.128)	0.144 (0.130-0.161)	0.169 (0.151 - 0.191)	0.206 (0.176-0.243)	0.236 (0.196 -0.287)	0.269 (0.215-0.338)	0.304 (0.235-0.398)	0.357 (0.260-0.494
24-hr	0.062 (0.057 -0.068)	0.076 (0.070-0.084)	0.096 (0.089-0.106)	0.113 (0.104-0.126)	0.138 (0.123-0.158)	0.159 (0.139 - 0.185)	0.181 (0.155-0.215)	0.205 (0.172-0.250)	0.241 (0.194-0.304

$$Q = c i A$$

Site A

18 acres

5-10% slope

Sandy Loam soils

Berry Production

C = 0.85

Tc = assume 10 min.

i (10yr) = 1.6 in./hr.

c = runoff coefficient, unitless

i = rainfall intensity, inches/hour

A = 18 acres = 784,080 sq.ft.

Lets Consider the 10-year Storm

Site B

18 acres

5-10% slope

Sandy Loam soils

Native Pasture

C = 0.35

Tc = assume 2 hrs.

i = .45 in./hr.

$$Q = c i A$$

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production
C = 0.85

Tc = assume 10 min.

c = runoff coefficient, unitlessi = rainfall intensity, inches/hourA = 18 acres = 784,080 sq.ft.

Lets Consider the 10-year Storm

18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35
Tc = assume 2 hrs.

i = .45 in./hr.

Site B

i (10yr) = 1.6 in./hr. = 0.000037 ft./sec. (unit conversion)

The Math

Q = (0.85)*(0.000037 ft./sec.)*(784,080 ft.2)

Q = 25 ft.3/sec (cfs)

$$Q = c i A$$

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production
C = 0.85

Tc = assume 10 min.

i (10yr) = 1.6 in./hr.

The Math

Q = 25 ft.3/sec (cfs)

c = runoff coefficient, unitlessi = rainfall intensity, inches/hourA = 18 acres = 784,080 sq.ft.

Lets Consider the 10-year Storm

Site B

18 acres
5-10% slope
Sandy Loam soils
Native Pasture
C = 0.35
Tc = assume 2 hrs.
i = .45 in./hr.
The Math

Q = 2.9 cfs

.VS

Lets Compare! Site Runoff Example

Site A

18 acres
5-10% slope
Sandy Loam soils
Berry Production

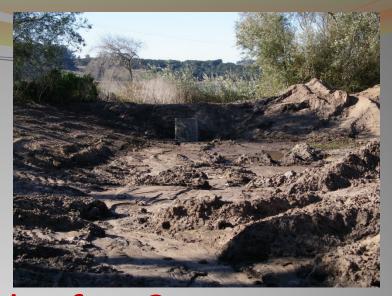
Site B
18 acres
5-10% slope
Sandy Loam soils
Native Pasture

Q = 25 cfs

Q = 2.9 cfs

Identifying the Problem is Easy

Figuring the Solution is Difficult


Proactive

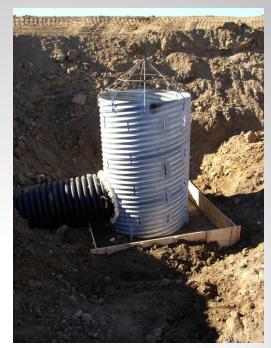
VS.

Reactive

Why all the fuss?

Sediment vs. Water Control

How big are we talking?



Questions/Comments?